温度与神秘的虚时间 | 众妙之门_风闻
返朴-返朴官方账号-关注返朴(ID:fanpu2019),阅读更多!2020-05-15 14:15
在一般认知里,温度和时间是两个截然不同的物理量,现在物理学家可以通过一种数学上的骚操作把它们联系起来,甚至可以“互换”。这个操作就是威克转动(Wick Rotation)——把时间变为虚时间。虚时间的引入,能使量子力学和统计物理中的问题相互转化并求解。尽管物理学家尚不十分清楚这一操作背后的物理本质是什么,但它一直是处理各种物理问题非常有效的工具,现在就来看看威克转动的神奇之处吧!
撰文 | 董唯元
物理学的魔力之一,就是能够将原本看似不相关的事物联系起来,从而揭示出自然规律更深刻的本质。在牛顿之前,恐怕没有人会相信,苹果落地与日月星辰的运行,背后由统一的规律在支配。今天我们要聊的时间与温度,也是两个貌似无关的物理对象,但是通过一种数学操作,它们之间的神秘联系就能显现出来!
虽然现在物理学家还无法完全理解这种联系的本质,但作为一种跨界处理问题的工具,它已经显示出了惊人的威力。像黑洞辐射温度这类原本看似无法下手的计算,现在竟然可以非常轻松地完成,其难度甚至不会超过高考数学压轴题。正是这种神奇的魔力,使许多物理学家都逐渐开始相信,这种数学操作的背后,一定还隐藏着尚未充分挖掘的深层物理奥妙。
用虚数计量时间
在相对论时空中,两个事件之间的距离ds是个不随参照系改变而变化的量,用自然单位制c=1简化后,事件距离ds满足的关系就是
ds^2=-dt^2+dx^2+dy^2+dz^2
这套分配给坐标 (t, x, y, z) 的系数 (-1, 1, 1, 1),称为闵可夫斯基度规,对每一位学习相对论的同学来说都是再熟悉不过的日常。不过既然时间和空间已经整合成了一体的时空,人们便总是希望能对称地看待时空中的四个坐标,闵氏度规中的-1就显得有些破坏对称美。
当然,将闵氏度规 (-1, 1, 1, 1) 更换成欧几里得度规 (1, 1, 1, 1) 的方法,肉眼可见的简单,只要将时间变成虚数
就可以得到
这个由实数时间向虚数时间的变动,就称为威克转动(Wick Rotation)。
威克转动不仅可以让线元ds的表达式变对称,如果强迫症上身,其实可以将所有波动方程都由
的形式,写成
这种更对称的样子。
既然威克转动带来的形式外观如此优雅,为什么在相对论的入门教科书中却极少使用呢?这主要是因为,数学形式上的和谐对称未必能帮助初学者理解掌握其物理内涵。比如我们经常说:两事件之间 ds^2<0 表示他们在同一个光锥内,可以存在因果关联;而 ds^2>0 时就铁定不存在因果关联。可是威克转动后 ds^2<0 的情况会消失,对初学者理解世界线的“类时”和“类空”反倒添了麻烦。不过在引力理论中,威克转动还是会显现威力,相关内容会在后文介绍。
量子现象在虚时间中的经典图像
要说引入虚时间后能帮助直观理解的例子,量子隧穿现象就很有代表性。这种早已人所共知的现象,是量子力学课堂上的常见习题,但用经典牛顿力学似乎无法求解。按照牛顿定律
粒子所携带的动能
只有E>V的地方,才能解得出粒子的位置x,而在E<V的地方则根本不存在x的实数解。这是我们在中学物理课上就已经熟悉的结论。
当我们将时间换成虚数,
,会看到牛顿定律的方程变成了
动能E变成了
原来,在虚时间的世界里,势能和动能都被加上了一个负号,于是粒子的位置x就只能出现在E<V的地方。
这个在虚时间世界里的解,刚好可以完美描述量子隧穿行为。处在虚时间过程中的赝粒子被称为瞬子,而量子隧穿就可以看做是瞬子在“势阱”里从一端运动到了另外一端,其运动过程和轨迹完全遵守牛顿定律,只是将时间变成了虚时间。没想到吧,在虚时间的帮助下,我们居然可以用牛顿力学的经典轨道来描述量子行为。
之所以能将飘忽的量子效应拉回到经典图像之中,是因为量子理论中很多奇特效应,反映在数学形式上就是以复数的形式体现。如果虚时间出现的位置合适,刚好就可以把这些复数变量重新变成实数。
不过更为有趣的是,虚时间的引入居然可以使量子力学与热力学产生许多微妙的联系。
联结两个算符
量子力学中有个时间演化算符,描述粒子随时间推移由一个量子态演化到另一个量子态的过程。热力学里有个密度算符,表述纯态在混合态里的统计占比。对比演化算符
和密度算符
不难看出二者的相似,只要勇敢地做出
替换,就可以相互转换。
可是这种纯数学上的“换元”操作,背后有物理意义吗?联想到密度算符中的β其实就是玻尔兹曼常数k与绝对温度T乘积的倒数,也被称为逆温度,而温度又与熵S对能量E导数有关,所以这种转换中暗示了虚时间与熵变之间的联系吗?
应该说这种脑洞有些过于写意,至少在没有足够具体的图像来支撑之前,不能随便做出这种推测。不过稍稍退回半步,关于虚时间与温度之间的联系,倒是确实已经有非常“物理”的内容,并且已经在理论研究中发挥着日益重要的作用。
最直观的解读就是,虚数单位i配合着实时间t一起出现在指数位置,这说明实时间其实是相位自由度,负责描述概率幅变化。在热力学的平衡态系综里,恰恰缺少了相位自由度,但同时多了另一个描述概率分布变化的参数,那就是温度。从这一点来看,直接把逆温度β与虚时间归为同类,至少当做哲学作业是可以交差了。
当然这种“因为缺骰子所以改掷硬币”的解读还是过于粗浅且模糊,如果现在就声称二者在物理上有什么内在一致性,恐怕很多人都还会满腹狐疑。相位有周期性重复,而实指数分布则不存在周期。况且时间在我们的认知里一直是个维度,很难相信温度也能充当维度的角色。两者的体貌特征实在差距太大,硬说是一对双胞胎,实在难以令人信服。
在进一步了解它们的物理意义之前,我们不妨先看看虚时间到底在哪些地方发挥了怎样的作用。
路径积分中的虚时间
费曼的路径积分理论,物理图像十分精彩,但具体数学操作却很容易吓倒一些初学者。引入虚时间的威克转动,就是经常用来简化路径积分的一大利器。
在讨论粒子运动的语境中,路径积分的意思是:粒子从A点走到B点的过程中,并不是留下一串固定的脚印,而是离开A点后立即化做无数的分身,这些分身同时经过了所有可能的路径,最后在B点又汇聚在一起。其中每一条路径上的分身,都对最终达到B点的概率做出自己的一份贡献。具体的贡献内容,就是状如e^(i/Sћ)这样一个相位,指数中的S是分身在路径上的作用量,也就是拉氏量L的积分。
计算一条路径的作用量和相位贡献貌似不难实现,但是如何把无数条路径的贡献累加在一起,则要颇费一番功夫。图中的“
”看起来谜之轻巧,但它其实是路径积分专属特殊标识,代表所有分身合力完成的无穷多重积分。


