Moore定律与中国半导体_风闻
半导体行业观察-半导体行业观察官方账号-专注观察全球半导体最新资讯、技术前沿、发展趋势。2020-02-17 11:20
来源:内容由公众号半导体行业观察(ID:icbank)授权转载自【桃芯科技 】,作者桃芯芯,谢谢。
桃芯科技
分享产品,分享知识,分享经验。为物联网发展和芯片设计提供桃芯方案。20年不长也不短了,20年最简单的事,就是将一个人变老,一个人的黄金岁月往多了算不过40年。20年也可以将一个国家的GDP变到世界第二,也可以将IC产业普及到大众认知。
一、导言
我们先往前说说00之前的半导体发展。90年代是真正的个人意识觉醒,以及全民商业化的序曲阶段,是国内信息化的开始,中国GDP逐步加速。下面几件事情如果你还有印象,那么你应该也不年轻了。
很多人把94年红磡演唱会神话为内地摇滚的高峰。其实,在经历了邓丽君的偷偷摸摸,西北风的豪迈,四大天王扫街,摇滚乐的嘶吼之后,国内音乐算是渐渐进入百花齐放。94红磡恰巧算是被当作一个休止符,被贴了个标签,当作一个老时代结束的标志。其实现在的摇滚乐,要是论创作水准,要比当时高不少,国内的livehouse演出也是风风火火,虽然靠乐队挣钱还是很艰难。
1990年上交所成立,90年代如果你参与了的话,你有大概率会赚钱。因为在初始阶段,总盘子在迅速扩大,如果你不是很点背的人,会被带着发财。事实上,确实有人发财,很多传奇故事里的主人公都印有这一段时间的烙印,而且那时候一般打到新的话就说明要小赚一笔,不像现在,新不新的其实没什么区别。
90年代末商品房开始出现了。如果我们知道中国的GDP是按照上图那根曲线发展,那搞几套房子就好了,不用做IC也不用做股票,当然也不用做投资。做了的就当娱乐。郑渊洁据说买了10多套房子装信,从1400元每平到14万每平,你算算。那时候宇宙中心五道口的华清嘉园开盘的时候也就4000元。
98年的时候,学习Verilog的人还算是非常早的了,除了大学和少数公司以及研究所,使用的人非常少。资料显示1995年synopsys在中国设立公司,1992年cadence进入中国市场。国内早先的IC设计是反向设计多,所谓反向就是剖别人的片子copy人家的设计。慢慢的随着EDA厂商进入中国,国内才真正开始从Verilog/VHDL到IC的正向设计。而且设计的基本都是面向应用的ASIC,设计规模不大,SoC的概念还很少或者说还没有。
当然还有其他的厂商EDA厂商包括Mentor做DFX,Ansys的IRdrop等等,还有消失的Avanti,Magma等等。但主流的全流程的EDA厂商,全球看来还是Synopsys和Cadence,其他厂商作为单点工具厂商有些活的还不错。
**作为一个早期的IC工程师,用EDA厂商作为开篇,是因为这里其实是应该向他们致敬。****那时候听一位台湾人说,大陆合格的IC工程师还不足300人。**工程师们对synopsis和cadence的依赖还比较多,在实战层面,无论从工具的使用上,还是从IC设计流程,甚至IC设计原理,都处于比较贫乏的状态。直到今天,没有他们,国内的IC设计几乎完成不了。更别说,对小公司,他们还放水养着鱼。
对于新世纪之前国外半导体发展,我们用几个代表公司大概梳理了一下美国半导体发展的时间节点,回头跟国内对应的时间可以做个对比。
文章也不会涵盖所有的话题,IC涉及的领域太多了,聊一些我更了解一些的。
二、国际半导体20年
2000年左右开始,国内半导体行业在互联网浪潮的带动下,出现了一波浪潮,大家发现从美国copy到国内paste好像是个能赚钱的生意,以百度,新浪,搜狐为代表掀起了第一波互联网泡沫。另外一方面也确实是计算机及信息技术爆发带来的底层技术上的强烈需求。
**2000到2008这几年中,出现了一大批创业企业,特别多的情况是硅谷回国的工程师,然后带着硅谷的投资,在国内创立了一大批的企业,算是第一次半导体发展浪潮。**说起来一些名字的话,有些应该大家很了解,有些则命运多舛。没有系统的总结,我随便说几个通信行业相关的,包括中星微,展讯,锐迪科,畅讯,硅谷数模,六合万通,希图,创毅视讯,新岸线等等吧,太多了。那时候方舟处理器也进行的如火如荼。
我也在其中一家创业公司。180nm工艺已经是挺先进的工艺了,FPGA用的是Xilinx的VertexII,流程都用DC/PT,仿真用VCS比NC-Verilog好像快不少,封装用BGA已经是显得非常NB了。虽然Synopsys和Cadence都是全流程,到目前为止,前端用Synopsys,后端用Cadence,测试用Mentor,大的地盘划分一直没有变。
IC行业里面,可以从工艺的演进角度看,也可以从行业技术的演进去看,我下面举几个例子来看看国内的IC行业与国外同行的对比。
(一) EDA工具
EDA(ElectronicsDesign Automation)工具实际上是个泛泛的概念,用来做辅助电子相关设计的软件都可以叫EDA。这里我们专门介绍一下做数字IC的EDA,暂且不包含模拟,PCB,FPGA等方面的。
数字IC的设计,测试包含几十道工序,对应的EDA软件也大约有这么多。看起来挺复杂的,但相比较制造过程,工序还是少很多。虽然制造过程也许不需要这么多专业软件,对材料,设备和工艺的要求比较苛刻一些。
**前面提到过EDA工具提供商里面全流程的包括Synopsys和Cadence,而Synopsys又可以看做行业老大。**2018年Synopsys的营收大概31亿美元,Cadence大约21亿美元。加上第三名Mentor的13亿美金,第四名ANSYS的12亿美金,这几家头部公司的营收占据了整个市场的几乎95%。
针对数字IC设计流程中的EDA,我们挑一些比较重要的来说一下。通常的一个软件可能会集成几个工序的工作,负责好几件事情。有些EDA公司在某个环节比较强,做出一个行业普遍认可的工具,我们叫点工具,它只负责整个工序的某个点。
我们就拿Synopsys举个例子,看看涉及到的工具有多少,每个系列少则几种,多则十来种:
就像我们之前提到的,每家工具的业界认可度不同,通常没有用一家工具完整的实现整个流程的。一般的,用Synopsys的前端工具,用Cadence后端工具,用Mentor的DFT和物理验证。国内公司我列了华大的情况,虽然还不能放在一起对比。
在2000年附近,在EDA领域有大约80家创业公司。在这一时期,诸如Avanti、Ambit、Magma、Monterey、Get-to-Chip、Verisity、Verplex,Atrenta等公司纷纷成立,最后所有这些公司后来都被Cadence和Synopsys收购了。Mentor则于2016年被西门子收购,但独立运营。
目前还存在的其他的EDA公司基本都是点工具公司,像ANSYS的RedHark作为IR Drop分析的工具,在业界也是无出其右,其2018年营收估计应该有12亿美金,当然还有一批小的点工具公司。
国内除了华大还有广立微、概伦、芯禾、九同方、博达微、蓝海微、珂晶达、鸿芯微纳、奥卡思微和行芯等EDA相关工具研发的企业,在不同方向上做一些工作。就像CPU,操作系统一样,EDA不光需要技术和人员投入,它也是需要有生态基础的一项运动,目前国内EDA还任重道远。
(二) 工艺制程
工艺制程是个耳熟能详的词。我们先看一个台积电工艺演进图感受一下数字半导体工艺节点的变化,体会一下Moore定律。
从台积电官网所公布的信息来看,在1987年成立时,他们的芯片工艺是3微米,在1990年提升到了1微米;2001年的时候提升到了0.13微米;2004年开始采用90纳米工艺;随后是65纳米、45纳米、40纳米、28纳米、20纳米,2015年提升到了16纳米;2016年升至10纳米;2017年是7nm;5nm也已在去年开始生产,将在今年上半年开始大规模量产。
这个图是个自然对数图,在90nm之前晶体管的尺寸缩小主要来自工艺,90nm到20nm主要来自于新材料以及工艺,20nm到目前的5nm和未来的3nm也是因为新材料和新的晶体管结构带来的晶体管尺寸减小。
我们简单说一下什么是工艺尺寸。传统ITRS定义技术节点是source和drain之间最小金属间距的一半(Half-Pitch)。但到了20/22nm引入FinFET以后,Half-Pitch的减少开始变得很慢,但是因为结构3D化后晶体管数量仍旧激增,厂商再用Half-Pitch就显示不出来技术进步了。因此各家的命名就比较乱,比如说台积电从10nm到7nm是用10nmX0.7的理想计算得到7nm,但Half-Pitch只是从42nm降到40nm。原理上每降一次工艺面积缩小一半,对应长宽各减小到原来的70%,这是20->14->10->7nm名称的由来。
晶体管的结构也经历了从2D到3D的演变。在20nm以后从PlanarFET演化到FinFET的架构。FinFET的创新性3D晶体管架构,可让IC制造商生产出尺寸更小、速度更快、功耗更低的器件。
在PlanarFET 到FinFET之间还出现了一种FD-SOI的工艺技术。FD-SOI技术还是一种平面工艺,但通过使用不同的起始衬底来杠杆化和延伸现有批量CMOS平面制造工艺的性能。FD-SOI的衬底中,在硅基底上布有一层超薄的氧化物薄膜以充当绝缘层。与传统的块状硅技术相比较,FD-SOI技术能提供更好的电晶体静电特性,也能降低影响元件性能的泄漏电流。
在早期平面晶体管阶段Metal Pitch/2和Gate Length差别不大,所以定义Metal Pitch/2为工艺节点,随着工艺的进步差别也越来越大,工艺节点和具体的尺寸已经不一一对应了。如上图右,从平面的晶体管到立体的晶体管虽然GateLength已经变化不是很大了,但是晶体管的数量缺增加了一倍,所以几nm工艺还会叫下去,只是他不代表实际物理尺寸的减半,而是单位面积上采用新材料,新结构带来的晶体管数量翻倍。
下表是14nm工艺下的对比参数,GateLength还是30左右,MetalPitch也在50-70,都不代表14nm本身这个数字。
我们刚才理解了一下工艺节点,看到了TSMC的工艺演进历程。比较国内的情况我们大致罗列一下。
中芯国际成立的2000年,当时台积电营收已经做到了1662亿新台币,净利润也做到了651亿新台币,同比增长也分别高达127.3%和165.1%。在2002年九月,中芯国际北京两座12英寸工厂动工;2003年,中芯国际又收购了摩托罗拉在天津设立的八英寸芯片厂。创始人张汝京曲折的从美国进口0.18微米工艺的生产设备,这种情况一直延续到0.13微米、90纳米和65纳米的工艺上。官方说法,中芯国际在2017年2季度就开始推出28nmHKMG制程,但当时28nm HKMG良率只做到40%,这离能被大家接受的大规模量产还有很大距离。而在2018年第一季度台积电的10nm工艺已经为他带来了19%的营业收入。
在新的CEO梁孟松到来后,14nm被提高到优先于28nm的地位。梁孟松曾在2019年Q2的财报会议上表示,“中芯国际第一代FinFET 14nm工艺已经进入客户验证阶段,产品可靠度与良率进一步提升”。期待中芯国际14nm早日量产。目前中芯国际最成熟,营收最大的应该还是55nm工艺。
国内其他的代工厂目前状态还比较好的包括华力微电子等。他们自2010年1月建厂以来,到2019年已经投入了80亿美元进行研发,目前主要产能在55nm以及40nm工艺,康桥厂二期,则承担了华力微28nm到14nm等先进工艺的生产任务。
从量产的角度看,和先进的工艺相比,大陆要落后4个节点左右(4代)。
**从国际角度看,台积电,Intel和三星是领导整个工艺制程的领头羊。**目前台积电、三星已经挑起3nm的战局。据悉,三星已经完成了首个3nm制程的开发,计划2022年规模生产3nm芯片,此前台积电也计划2022年量产3nm。
Intel稍有尴尬,我们知道Intel创始人Moore提出的Moore定律,一直到14nm之前都是领先业界。而刚刚下野的柯再奇就有点尴尬,业界有柯再奇‘挤牙膏’的梗。在他任内,从14nm到14nm+++尴尬无比,搞了3年多。
2014年苹果几经周折在台积电终于实现了20nm A8的量产,而当年英特尔已经开始量产14nm,领先台积电1-1.5代。苹果对CPU性能的苛刻要求迫使台积电的一路狂奔,在18年反超Intel。而现在,Intel的10nm才刚刚量产,7nm估计也得2年后,和另外2家的3nm同步上了。
不止于此,老陪衬AMD的RyZen居然在也迎头赶上,在CPU领域Intel也没有那么闲庭信步了。看来Intel要好好反思整理一下。
我们感受一下台积电在代工领域的行业地位。通常的,台积电每年占有50%-60%之间的市场占有率。当然了,三星不算是纯的代工厂。
一条晶圆制造新建产线的资本支出大概为:厂房 20%、晶圆制造设备 65%、组装封装设备 5%,测试设备7%,其他 3%。其中晶圆制造设备在 半导体设备中占比最大,进一步细分晶圆制造设备类型,光刻机占比 30%,刻蚀 20%,PVD15%,CVD10%,量测 10%,离子注入5%,抛光 5%,扩散 5%。
这是一个系统工程,如果要赶超世界先进水平的话,不光要采购设备和材料,还需要生产设备和材料,这才是一个比较理想的状态。但是也不可能一蹴而就,扎扎实实的,先把一个工艺吃透,建立自己的研发能力,在此基础上追赶。盲目在后面追赶工艺制程并不是一个好的办法。摩尔定律一定会放缓,乃至未来消失,我们依然有机会。当然了,我们也一定要关注下面将要发生的跨越性的变革,比如说,是不是量子科技带来的,虽然他现在还很幼稚。
顺手的,我贴一个存储器在工艺方面的进展(来源,AMSL),存储器应该是芯片领域里单品销量最大的产品,甚至达到1/3的规模。
(三)CPU
CPU的情况相对没那么复杂,PC/Server的市场主要是Intel和AMD占据,手持设备和嵌入式主要是Arm,最近RISC-V借着指令集开源的东风有星火燎原的势头。国内也有一些CPU的开发者,龙芯的处理器瞄准的是Intel这类应用,而其他的主要是作为嵌入式或者某些专用场景。
ARM的区别在于,他本身只提供CPU核,由其他厂商集成为各种单核或多核处理器,无论APPLE,高通,华为等等都使用ARM的内核。
对应RISC-V,目前的内核提供商包括SiFive,Andes,芯来,中天微等。RSIC-V是一个开源指令集的嵌入式CPU,目前各家公司根据开源的指令开发自己的底层IP核,同时对于拓展部分DSP内核也采用了基于Andes的指令集。
虽然指令集是开放的,但硬件部分每家的经验,能力不一样,工具链的能力也不一样,所提供的产品应该说也是具有很大差别。虽然说是开放的,对于国内厂商来说是个新的机会,但从目前的发展状态来看,还是SiFive和Andes的内核比较有竞争力,大陆的东西还是很弱势,要赶超的话,要加油啊。
作为使用者,从生态或是性能的角度看依然是ARM的东西比较可靠,但如果RISC-V的生态比较好,是未来趋势的话,还是应该尽早参与。
2002年8月10日,“龙芯1号”问世。2003年4月18日龙芯2号”问世。2016年,龙芯3A3000才研制成功,因2016年是红军长征胜利80周年,因此以CZ80命名。十年来,龙芯先后研制了龙芯3A1000、3B1000、3B1500、3A2000/3B200、3A3000/3B3000五款龙芯3号系列芯片。
直到2019年,龙芯发布了龙芯3A4000/3B4000,使用龙芯公司最新研制的新一代处理器核GS464V,主频1.8-2GHz,采用28nm工艺。
而反观2000年的时候Intel的市值已经达到5000亿美元,酷睿系列面世后的2006年的营收达到354亿美元,而2018年Intel的营收已经高达780亿美元,长期位列半导体公司排名第一位。
最近AMD的RyZen比较风光,而且龙芯官方对比的也是AMD前一个挖掘机系列,我们就把AMD RyZen9也拿来和他一起对比一下,可以看到差距还是非常大:
**做CPU应该所有的IP都是自己的,包括内核,接口,存储控制,乃至GPU、NPU等。**还需要OS的配合想WINTEL组合,AA(ARM&Android)组合那样。硬件生态上面,还需要主板级的硬件供应商和伙伴,这个还相对容易一些。软件生态方面则需要让软件公司有动力为新的OS开发应用。
这些都是挑战,而且东西越没人用迭代越慢,从指标上看差距也许还不到10年,但从生态看就差20年了。有人开玩笑说,如果Windows被禁止了,国内的CPU,OS,软件没准很快就上去了。不过这只是玩笑。
RISC-V和ARM对比的话,目前几乎所有的厂商都能拿出比较漂亮的表格,但是这个需要用户实战的效果作为最终评判。到目前为止,用RISC-V量产的芯片还不是很多,不过近几年肯定会出现一个放量增长的过程。如果性能基本匹配,而且ARM的M系列IP核不做重大的战略调整的话,那么新局面一定会出现。
(四)FPGA
说到FPGA就必须说行业龙头Xilinx,成立于1984年的赛灵思在1998年推出Virtex系列FPGA,演进到2006年推出45nm的Virtex6大行其道,直到用这个系列拿下行业龙头的宝座。另外,他还有并行的低端产品线是Spartan系列。从2011年开始7系列FPGA后,Xilinx在7系列上衍生出新的产品系列,目前一共4个系列。
**2019年Xilinx以近30亿美元的营收,以及超过50%的市场占比继续引领FPGA技术以及市场的发展。**排行第二的Altera以性价比的优势在中低端市场占据较大份额,与Xilinx一起占据了FPGA 将近90%的市场份额。2015年Altera以167亿美元的价格被Intel收购。
由于FPGA在通信,消费电子以及汽车等领域应用越来越广泛,预计市场规模将由目前的60亿美元增长至2025年的120亿美元(数据:MRFR)。该领域也引起了国内同行的兴趣,目前国内的FPGA厂商有京微齐力、复旦微电子、紫光同创、高云半导体、安路科技和西安智多晶等。目前国产FPGA厂商主要还是以40nm、55nm产品为主,应用场景还都是比较低端或者比较特定,跟这两大厂商目前还没有什么可比性。
FPGA是一个比较特别的行业。首先FPGA本身是一种芯片,但这种芯片可以通过内部资源配置芯片的具体功能。其次他还需要一套配合芯片应用的EDA工具(比如Xilinx的ISE),如果内部带CPU那还得配上一套软件开发的IDE(比如Xilinx的EDK)。
通常FPGA除了比较灵活之外,价格太高,面积太大,功耗也高,基本上都是做原型产品来用,以及一些产品数量不大的市场,一旦芯片市场容量稍微有一定规模,就会转移到ASIC上面。近年来,随着FPGA厂商在功耗,成本上的努力,在某些产品场景上也显示出来了一定优点。
FPGA的内部资源根据产品的目标场景有不同的配置,如果需要设计高端的产品,对厂商来说也是比较具有挑战性。拿Xilinx的Virtex7来说明一下FPGA内部资源。先看一下7系列的配置。
作为一个可配置成不同应用的芯片,不管是用在传统的通信领域,还是其他方面,我们看到Virtex7基本上相当于一个比较强的AP,虽然不需要像手机多核AP一样强悍,但作为各种通讯设备的处理器已经是很牛了。比如,
多达200万个逻辑单元,每个单元至少相当于15个IC逻辑门,以及30万个Slice,每个Slice平均包含一个LUT以及一个寄存器等。68Mb RAM非常给力,满足绝大多数IC对内部存储的需求。5335 GMACS 的 DSP 处理性能,满足无线 LTE 基础设施设备、LED 背光和3D数字视频显示器等应用。支持 400G 桥接和交换结构有线通信系统,支持核心有线基础设施高速串行连接功能和内置式 Gen3x8 PCI Express,以及其他DDR借口,串行借口等。LTE基带能够满足通用平台内 LTE 基带处理严苛的延迟要求,支持 多种空中接口混合使用。集成PowerPC,ADC等等。
目前国内FPGA都还比较弱,仅仅从参数这个层面来看的话,就已经远远不在一个层面。国内厂商需要在特定场景,特定应用里面寻找合适的空间发展,以积累经验和资本,再图谋更高规格场景。
(五)无线通信(5G,WiFi,蓝牙)一)5G演进
这里也通过回顾无线通信的发展来看一下近20年无线技术方面演进的情况,应该说也是突飞猛进,各类标准演进非常积极。说无线通信必然要说5G,但5G太广为人知了,我们也在不同文章有过相关的论述,这里简单总结一下。
2003年左右,我们听说MTK的2G手机芯片turnkey方案大行其道,横扫深圳的山寨机市场。公司也就百十来人,年会的时候抽美金,抽宝马,很快MTK就变成了移动通信芯片的一级供应商,而现在转眼5G就来了,你说快不快。
这个表大致比较清晰的描述了从1G到5G的大致发展历程,以及关键技术和应用场景,作为背景知识应该够了。
4G实际上大家都说是3G+WiFi,因为他引入了WiFi的OFDM调制技术,首先是提高了传输速率,其次是提高了频谱利用以及传输质量。
5G定义了eMBB、uRLLC和mMTC三大场景,eMBB主要针对4K/8K、VR/AR等大带宽应用,uRLLC主要针对远程机器人控制、自动驾驶等超高可靠超低时延应用,而NB-IoT和eMTC将演进为mMTC,主要针对低速率的大规模物联网连接。
2018年发布的R15是5G第一版成型的商用化标准,R15目前支持5G三大场景中的增强型移动宽带(eMBB)和超可靠低时延(URLLC)两大场景,海量机器通信(mMTC)场景标准将在R16中确定。
R15重点关注如下几个方面:新空口(波形、编码、参数集、帧结构、大规模阵列天线等)、网络架构(NSA、SA、CU/DU切分等),并聚集在eMBB场景。
**大家之前听到的华为Polar码的故事,实际上最后高通力推的LDPC码作为eMBB数据信道(无论长短码)的编码方案,而Polar码当作安慰奖作为eMBB控制信道的编码方案。**这事没那么重要。
R16不仅将完善5G场景,包括5G-V2X、高可靠、专网、行业局域网,mMTC(eNB升级空口+5GC),还将有力提升5G性能:MIMO增强、大气波导干扰规避、大数据采集标准化等。2019年6月3GPP RAN#84会议上确定R16计划将于2020年3月冻结发布。同时R17的工作内容也确定下来,并计划在2021年6月冻结。
R17将要涉及的更新将包括:
NR Light:针对中档NR设备(例如MTC、可穿戴等)运作进行优化设计;小数据传输优化:小数据包/非活动数据传输优化;Sidelink增强:sidelink是D2D直联通信采用的技术,Rel-17会进一步探索其在V2X、商用终端、紧急通信领域的使用案例,实现这几个应用中的最大共性。定义52.6GHz以上频率:Rel-15中定义FR1为410MHz - 7.125GHz,FR2为24.25GHz – 52.6GHz,R17将5G NR的频段范围从52.6GHz扩展到了71GHz。进一步把室内定位精准度提升到厘米级,大概是20-30厘米左右。在工业物联网的应用中加强室内资产追踪、AGV追踪等。
关于NR-Light,如果说uRLLC针对的是“高端”物联网应用场景,而mMTC针对的是“低端”物联网应用场景,那么在eMBB、mMTC与uRLLC之间存在的“中端物联网市场”的空白地带将是NR-Light将要研究和定义的内容。
下面我们再说一下WiFi和蓝牙的标准演进情况。
二)WiFi演进
1990年,基于未授权频谱中的无线通信,IEEE 802.11工作组成立,初始版Wi-Fi最终于1997年正式实现标准化,但并未产生广泛影响。直到1999年,802.11b应运而生,该技术使用与初始802.11无线标准相同的2.4GHz ISM频段,但将支持的吞吐量大幅提高到了11Mbit/s,实现了对标10 Mbit/s以太网的网络标准。可以看出WiFi同以太网的密切历史渊源,所以说他是具有互联网基因的一项无线技术。
同时为了匹配以太网的高网速,以及解决2.4G频段比较拥挤的情况,802.11a也几乎同时诞生,他采用5.8G的载频,速率达到54Mbps。
然而由于802.11a采用了不同的频段,需要不同的射频,与802.11b不兼容,所以应用并不广泛。